6,553 research outputs found

    Improved phase locked loop receiver

    Get PDF
    Improved phase locked loop receiver tracks and demodulates a signal whose signal-to-noise ratio may be low and whose information sidebands are close in frequency. This receiver recovers the carrier from input signals and applies it to a demodulator which recovers the sidebands

    Quantum trajectories and open many-body quantum systems

    Get PDF
    The study of open quantum systems has become increasingly important in the past years, as the ability to control quantum coherence on a single particle level has been developed in a wide variety of physical systems. In quantum optics, the study of open systems goes well beyond understanding the breakdown of quantum coherence. There, the coupling to the environment is sufficiently well understood that it can be manipulated to drive the system into desired quantum states, or to project the system onto known states via feedback in quantum measurements. Many mathematical frameworks have been developed to describe such systems, which for atomic, molecular, and optical (AMO) systems generally provide a very accurate description of the open quantum system on a microscopic level. In recent years, AMO systems including cold atomic and molecular gases and trapped ions have been applied heavily to the study of many-body physics, and it has become important to extend previous understanding of open system dynamics in single- and few-body systems to this many-body context. A key formalism that has already proven very useful in this context is the quantum trajectories technique. This was developed as a numerical tool for studying dynamics in open quantum systems, and falls within a broader framework of continuous measurement theory as a way to understand the dynamics of large classes of open quantum systems. We review the progress that has been made in studying open many-body systems in the AMO context, focussing on the application of ideas from quantum optics, and on the implementation and applications of quantum trajectories methods. Control over dissipative processes promises many further tools to prepare interesting and important states in strongly interacting systems, including the realisation of parameter regimes in quantum simulators that are inaccessible via current techniques.Comment: 66 pages, 29 figures, review article submitted to Advances in Physics - comments and suggestions are welcom

    Effective three-body interactions via photon-assisted tunneling in an optical lattice

    Get PDF
    We present a simple, experimentally realizable method to make coherent three-body interactions dominate the physics of an ultracold lattice gas. Our scheme employs either lattice modulation or laser-induced tunneling to reduce or turn off two-body interactions in a rotating frame, promoting three-body interactions arising from multi-orbital physics to leading-order processes. This approach provides a route to strongly-correlated phases of lattice gases that are beyond the reach of previously proposed dissipative three-body interactions. In particular, we study the mean-field phase diagram for spinless bosons with three- and two- body interactions, and provide a roadmap to dimer states of varying character in 1D. This new toolset should be immediately applicable in state-of-the-art cold atom experiments.Comment: 11 pages, 6 figure

    The moment index of minima (II)

    Get PDF
    The moment index of a nonnegative random variable X has the property that the moment index of the minimum of two independent r.v.s X and Y is greater than or equal to the sum of the moment indices of X and Y. We characterize conditions under which equality holds for a given r.v. X and every independent nonnegative r.v. Y, and discuss extensions to related r.v.s and their distributions

    Robust gradient-based discrete-time iterative learning control algorithms

    Get PDF
    This paper considers the use of matrix models and the robustness of a gradient-based Iterative Learning Control (ILC) algorithm using both fixed learning gains and gains derived from parameter optimization. The philosophy of the paper is to ensure monotonic convergence with respect to the mean square value of the error time series. The paper provides a complete and rigorous analysis for the systematic use of matrix models in ILC. Matrix models make analysis clearer and provide necessary and sufficient conditions for robust monotonic convergence. They also permit the construction of sufficient frequency domain conditions for robust monotonic convergence on finite time intervals for both causal and non-causal controller dynamics. The results are compared with recent results for robust inverse-model based ILC algorithms and it is seen that the algorithm has the potential to improve robustness to high frequency modelling errors provided that resonances within the plant bandwidth have been suppressed by feedback or series compensation

    Non-equilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission

    Get PDF
    We analyze in detail the heating of bosonic atoms in an optical lattice due to incoherent scattering of light from the lasers forming the lattice. Because atoms scattered into higher bands do not thermalize on the timescale of typical experiments, this process cannot be described by the total energy increase in the system alone (which is determined by single-particle effects). The heating instead involves an important interplay between the atomic physics of the heating process and the many-body physics of the state. We characterize the effects on many-body states for various system parameters, where we observe important differences in the heating for strongly and weakly interacting regimes, as well as a strong dependence on the sign of the laser detuning from the excited atomic state. We compute heating rates and changes to characteristic correlation functions based both on perturbation theory calculations, and a time-dependent calculation of the dissipative many-body dynamics. The latter is made possible for 1D systems by combining time-dependent density matrix renormalization group (t-DMRG) methods with quantum trajectory techniques.Comment: 17 pages, 14 figure

    A fault-tolerant clock

    Get PDF
    Computers must operate correctly even though one or more of components have failed. Electronic clock has been designed to be insensitive to occurrence of faults; it is substantial advance over any known clock
    • …
    corecore